Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6692): 217-222, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603509

RESUMO

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."


Assuntos
Cianobactérias , Haptófitas , Mitocôndrias , Fixação de Nitrogênio , Nitrogênio , Cianobactérias/genética , Cianobactérias/metabolismo , Haptófitas/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Água do Mar/microbiologia , Simbiose , Mitocôndrias/metabolismo , Cloroplastos/metabolismo
2.
Microsc Microanal ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525890

RESUMO

Correlative light and electron microscopy (CLEM) methods are powerful methods that combine molecular organization (from light microscopy) with ultrastructure (from electron microscopy). However, CLEM methods pose high cost/difficulty barriers to entry and have very low experimental throughput. Therefore, we have developed an indirect correlative light and electron microscopy (iCLEM) pipeline to sidestep the rate-limiting steps of CLEM (i.e., preparing and imaging the same samples on multiple microscopes) and correlate multiscale structural data gleaned from separate samples imaged using different modalities by exploiting biological structures identifiable by both light and electron microscopy as intrinsic fiducials. We demonstrate here an application of iCLEM, where we utilized gap junctions and mechanical junctions between muscle cells in the heart as intrinsic fiducials to correlate ultrastructural measurements from transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM) with molecular organization from confocal microscopy and single molecule localization microscopy (SMLM). We further demonstrate how iCLEM can be integrated with computational modeling to discover structure-function relationships. Thus, we present iCLEM as a novel approach that complements existing CLEM methods and provides a generalizable framework that can be applied to any set of imaging modalities, provided suitable intrinsic fiducials can be identified.

7.
FASEB J ; 37(1): e22681, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519968

RESUMO

Developing in silico models that accurately reflect a whole, functional cell is an ongoing challenge in biology. Current efforts bring together mathematical models, probabilistic models, visual representations, and data to create a multi-scale description of cellular processes. A realistic whole-cell model requires imaging data since it provides spatial constraints and other critical cellular characteristics that are still impossible to obtain by calculation alone. This review introduces Soft X-ray Tomography (SXT) as a powerful imaging technique to visualize and quantify the mesoscopic (~25 nm spatial scale) organelle landscape in whole cells. SXT generates three-dimensional reconstructions of cellular ultrastructure and provides a measured structural framework for whole-cell modeling. Combining SXT with data from disparate technologies at varying spatial resolutions provides further biochemical details and constraints for modeling cellular mechanisms. We conclude, based on the results discussed here, that SXT provides a foundational dataset for a broad spectrum of whole-cell modeling experiments.


Assuntos
Imageamento Tridimensional , Tomografia por Raios X , Raios X , Imageamento Tridimensional/métodos , Tomografia por Raios X/métodos , Organelas
8.
Viruses ; 14(12)2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36560654

RESUMO

Upon infection, viruses hijack the cell machinery and remodel host cell structures to utilize them for viral proliferation. Since viruses are about a thousand times smaller than their host cells, imaging virus-host interactions at high spatial resolution is like looking for a needle in a haystack. Scouting gross cellular changes with fluorescent microscopy is only possible for well-established viruses, where fluorescent tagging is developed. Soft X-ray tomography (SXT) offers 3D imaging of entire cells without the need for chemical fixation or labeling. Here, we use full-rotation SXT to visualize entire human B cells infected by the herpes simplex virus 1 (HSV-1). We have mapped the temporospatial remodeling of cells during the infection and observed changes in cellular structures, such as the presence of cytoplasmic stress granules and multivesicular structures, formation of nuclear virus-induced dense bodies, and aggregates of capsids. Our results demonstrate the power of SXT imaging for scouting virus-induced changes in infected cells and understanding the orchestration of virus-host remodeling quantitatively.


Assuntos
Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/química , Tomografia por Raios X/métodos , Capsídeo
9.
Front Cell Dev Biol ; 10: 819534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517500

RESUMO

Considerable progress has been made in our knowledge of the morphological and functional varieties of anchoring junctions. Cell-cell adhesion contacts consist of discrete junctional structures responsible for the mechanical coupling of cytoskeletons and allow the transmission of mechanical signals across the cell collective. The three main adhesion complexes are adherens junctions, tight junctions, and desmosomes. Microscopy has played a fundamental role in understanding these adhesion complexes on different levels in both physiological and pathological conditions. In this review, we discuss the main light and electron microscopy techniques used to unravel the structure and composition of the three cell-cell contacts in epithelial and endothelial cells. It functions as a guide to pick the appropriate imaging technique(s) for the adhesion complexes of interest. We also point out the latest techniques that have emerged. At the end, we discuss the problems investigators encounter during their cell-cell adhesion research using microscopic techniques.

10.
STAR Protoc ; 3(1): 101176, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35199039

RESUMO

The protocol describes step-by-step sample preparation, data acquisition, and segmentation of cellular organelles with soft X-ray tomography. It is designed for microscopes built to perform full-rotation data acquisition on specimens in cylindrical sample holders, such as the XM-2 microscope at the Advanced Light Source, LBNL; however, it might be generalized for similar sample holder designs for both synchrotron and table-top microscopes. For complete details on the use and execution of this profile, please refer to Loconte et al. (2021).


Assuntos
Imageamento Tridimensional , Tomografia por Raios X , Imageamento Tridimensional/métodos , Microscopia/métodos , Rotação , Síncrotrons , Tomografia por Raios X/métodos
11.
Cytoskeleton (Hoboken) ; 77(12): 527-543, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33249765

RESUMO

The actin family is crucial for many cellular processes and in mammals muscle and non-muscle forms exist. The latter group contains cytoplasmic-ß-actin and cytoplasmic-γ-actin, almost identical in amino acid sequence and with a significant functional overlap. We introduce the properties of the Actb gene and mRNA transcript(s) with main focus on the 3'UTR and its unique features, that is, the zipcode and two polyadenylation sites creating transcripts of different lengths. Several transgenic mouse models with a modified Actb locus have been created. The different mouse models can be divided into three groups; that is, 5' or 3' insertion models, mouse models with loxP sequences around exon 2-3 resulting in deletion the start codon, and models with gene edited Actb sequences that produces γ-actin protein instead of ß-actin. Whole body knockouts and, with one exception, insertion models lead to embryonic lethality indicating that the Actb gene or transcripts or translated ß-actin are essential. Tissue specific ablation at later developmental stages lead to no, or mild phenotypes, suggesting that the Actb gene or ß-actin protein is somewhat dispensable. Gene edited Actb mice that produce γ-actin are viable. This assumes that the nucleotide sequence of Actb is important and not the specific amino acid sequence of the protein it encodes. Upregulation of other actin paralogs was frequently observed upon ß-actin ablation and can also engage in the phenotype. For a better understanding, it will be necessary to analyze in current and future models all relevant actin transcripts and protein levels in a standardized and comprehensive way.


Assuntos
Actinas/metabolismo , Animais , Camundongos , Camundongos Transgênicos
12.
Histochem Cell Biol ; 149(5): 479-490, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29508067

RESUMO

The intercalated disc (ID) contains different kinds of intercellular junctions: gap junctions (GJs), desmosomes and areae compositae, essential for adhesion and communication between adjacent cardiomyocytes. The junctions can be identified based on their morphology when imaged using transmission electron microscopy (TEM), however, only with very limited information in the z-dimension. The application of volume EM techniques can give insight into the three-dimensional (3-D) organization of complex biological structures. In this study, we generated 3-D datasets using serial block-face scanning electron microscopy (SBF-SEM) and focused ion beam SEM (FIB-SEM), the latter resulting in datasets with 5 nm isotropic voxels. We visualized cardiomyocytes in murine ventricular heart tissue and, for the first time, we could three-dimensionally reconstruct the ID including desmosomes and GJs with 5 nm precision in a large volume. Results show in three dimensions a highly folded structure of the ID, with the presence of GJs and desmosomes in both plicae and interplicae regions. We observed close contact of GJs with mitochondria and a variable spatial distribution of the junctions. Based on measurements of the shape of the intercellular junctions in 3-D, it is seen that GJs and desmosomes vary in size, depending on the region within the ID. This demonstrates that volume EM is essential to visualize morphological changes and its potential to quantitatively determine structural changes between normal and pathological conditions, e.g., cardiomyopathies.


Assuntos
Imageamento Tridimensional , Junções Intercelulares/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Animais , Camundongos , Microscopia Eletrônica de Varredura , Miócitos Cardíacos/citologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...